NOTES

- NOTES WITH MIND MAPS -MATHEMATICS (MENSURATION)

ΤН

www.eduract.com

Mensuration

Mensuration is the branch of mathematics that deals with the measurement of length, area or volume of various geometric shapes.

A branch of mathematics that talks about the length, volume, or area of different geometric shapes is called Mensuration. These shapes exist in 2 dimensions or 3 dimensions. Let's learn the difference between the two.

Differences Between 2D and 3D shapes

2D Shape	3D Shape
If a shape is surrounded by three or more straight lines in a plane, then it is a 2D shape.	If a shape is surrounded by a no. of surfaces or planes then it is a 3D shape.
These shapes have no depth or height.	These are also called solid shapes and unlike 2D they have height or depth.
These shapes have only two dimensions say length and breadth.	These are called Three dimensional as they have depth (or height), breadth and length.
We can measure their area and Perimeter.	We can measure their volume, CSA, LSA or TSA.

Mensuration in Math's- Important Terminologies

Let's learn a few more definitions related to this topic.

Terms	Abbreviation	Unit	Definition
Area	A	m ² or cm ²	The area is the surface which is covered by the closed shape.
Perimeter	Ρ	cm or m	The measure of the continuous line along the boundary of the given figure is called a Perimeter.
Volume	V	cm ³ or m ³	The space occupied by a 3D shape is called a Volume.
Curved Surface Area	CSA	m ² or cm ²	If there's a curved surface, then the total area is called a Curved Surface area. Example: Sphere
Lateral Surface area	LSA	m ² or cm ²	The total area of all the lateral surfaces that surrounds the given figure is called the

			Lateral Surface area.
Total Surface Area	TSA	m ² or cm ²	The sum of all the curved and lateral surface areas is called the Total Surface area.
Square Unit	-	m ² or cm ²	The area covered by a square of side one unit is called a Square unit.
Cube Unit	-	m ³ or cm ³	The volume occupied by a cube of one side one unit

Mensuration Formulas

Now let's learn all the important mensuration formulas involving 2D and 3D shapes. Using this mensuration formula list, it will be easy to solve the mensuration problems. Students can also download the mensuration formulas list PDF from the link given above. In general, the most common formulas in mensuration involve surface area and volumes of 2D and 3D figures.

Mensuration Formulas				
Peri	meter	Surfa	ce Area	
Square	P = 4s	Cube	$SA = 6s^2$	
Rectangle	P = 2(l+w)	Cylinder	$SA = 2\pi rh + 2\pi r^2$	
Circup	foronco	Cone	$SA = \pi r l$	
Circle	$C = 2\pi r$	Sphere	$SA = 4\pi r^2$	
А	rea	Vo	lume	
Square	$A = s^2$	Cube	$V = s^3$	
Rectangle	A = hw	Cylinder	$V = \pi r^2 h$	
Triangle	$A = \frac{1}{2}bh$	Cone	$V = \frac{1}{3}\pi r^2 h$	
Trapezoid	$A = \frac{1}{2} (b_1 + b_2) h$	Sph <mark>ere</mark>	$V = \frac{4}{3}\pi r^3$	
Circle	$A = \pi r^2$		\sim	

Mensuration Formulas For 2D Shapes

Shape	Area (Square units)	Perimeter (units)	Figure
Square	a ²	4a	

Class 6th Mathematics

Shape	Area (Square units)	Perimeter (units)	Figure
Rectangle	l×b	2 (l+b)	b
Circle	πr ²	2 π r	r
Scalene Triangle	√[s(s-a)(s-b)(s-c)], Where, s = (a+b+c)/2	a+b+c	Area of scalene triangle
Isosceles Triangle	½ × b × h	2a + b	a h a b

www.eduract.com

Class 6th Mathematics

Shape	Area (Square units)	Perimeter (units)	Figure
Equilateral triangle	(√3/4) × a²	3a	a a a
Right Angle Triangle	½ × b × h	b + hypotenuse + h	h
Rhombus	$\frac{1}{2} \times d_1 \times d_2$	4 × side	A B d ₁ d ₂ D C
Parallelogram	b×h	2(l+b)	A b B

(6)

Class 6th Mathematics

Shape	Area (S units)	quare	Perin (units	neter s)	Figure
Trapezium	½ h(a+c	;)	a+b+	c+d	A a B d b c C
Mensuration	Formulas fo	r 3D Shapes			R:2
Shape	Volume (Cubic units)	Curved Surf Area (CSA) Lateral Surf Area (LSA) (Square uni	face or face ts)	Total Surface Area (TS (Square units)	Figure
Cube	a ³	$LSA = 4 a^2$		6 a ²	a
Cuboid	l×b×h	LSA = 2h(l +	b)	2 (lb +bh +hl)	h b l

Shape	Volume (Cubic units)	Curved Surface Area (CSA) or Lateral Surface Area (LSA) (Square units)	Total Surface Area (TSA) (Square units)	Figure
Sphere	(4/3) π r ³	4 π r ²	4 π r ²	r
Hemisphere	(⅔) π r³	2πr ²	3 πr ²	
Cylinder	πr ² h	2πrh	2πrh + 2πr ²	h

Shape	Volume (Cubic units)	Curved Surface Area (CSA) or Lateral Surface Area (LSA) (Square units)	Total Surface Area (TSA) (Square units)	Figure
Cone	(⅓) π r² h	πrl	πr (r + l)	h
Shapes				

A shape is the form of an object.

Examples of two-dimensional shapes are square, rectangle and triangle, and of threedimensional shapes are cube, cuboid and sphere.

Perimeter

Perimeter is the total length or total distance covered along the boundary of a closed shape.

Perimeter of a circle is also called as the circumference of the circle.

Perimeter of a Triangle

