

- NOTES WITH MIND MAPS -MATHEMATICS (SEQUENCES AND SERIES)

SEQUENCE AND SERIES

Top Definitions

- A Sequence is an ordered list of numbers and has the same meaning as conversational english. Asequence is denoted by <a_n> _{n≥1} = a₁, a₂, a₃,a_n.
- 2. The various numbers occurring in a sequence are called its terms.
- 3. A sequence containing finite number of terms is called a finite sequence. A finite sequence has the last term.
- 4. A sequence which is not a finite sequence, i.e., containing an infinite number of terms is called aninfinite sequence. There is no last term in an infinite sequence.
- 5. A sequence is said to be an arithmetic progression if every term differs from the preceding term by a constant number. For example, the sequence a_1 , a_2 , a_3 ,... a_n is called an arithmetic sequence or AP if $a_{n+1} = a_n + d$.

For all $n \in N$, where d is a constant called the common difference of AP.

- 6. A is the arithmetic mean of two numbers a and b if a, A and b forms AP.
- A sequence is said to be a geometric progression or GP if the ratio of any tem to its preceding term is the same throughout. Constant ratio is a common ratio denoted by r.
- 8. If three numbers are in GP, then the middle term is called the geometric mean of the other two.

Top Concepts

- 1. A sequence has a definite first member, second member, third member and so on.
- 2. The n^{th} term $\langle a_n \rangle$ is called the general term of the sequence
- 3. Fibonacci sequence 1, 1, 2, 3, 5, 8, .. is generated by a recurrence relation given by $a_1 = a_2 = 1$.

$$a_3 = a_1 + a_2 \dots$$

 $a_n = a_{n-2} + a_{n-1}, n > 2.$

Class 11th Mathematics

- 4. A sequence is a function with a domain, the set of natural numbers or any of its subsets of the type {1, 2, 3, ... k}.
- 5. If the number of terms is three with a common difference 'd', then the terms are a- d, d and a+ d
- 6. If the number of terms is four with common difference '2d', then the terms are a-3d, a-d, a + d and a + 3d.
- 7. If the number of terms is five with a common difference 'd', then the terms are a 2d, a d, a, a + d and a + 2d.
- 8. If the number of terms is six with a common difference '2d', then the terms are a 5d, a 3d, a d, a + d, a + 3d and a + 5d.
- 9. The sum of the series is the number obtained by adding the terms.
- 10. The general form of AP is a, a + d, a + 2d, ...a + (n 1) d. The term a is called the **first term** of AP and d is called the **common difference** of AP. The term d can be any real number.
- 11. If d>0, then AP is increasing, if d < 0 then AP is decreasing, and if d = 0, then AP is constant.</p>
- 12. For AP, a, (a + d), (a + 2d), ..., $(\lambda 2d)$, (λd) , λ with the first term a and common difference d and last term λ and general term is $\lambda (n 1)d$.
- 13. Let a be the first term and d be the common difference of AP with 'm' terms. Then nth term from theend is the (m- n + 1)th term from the beginning.
- 14. Properties of AP
 - i. If a constant is added to each term of AP, then the resulting sequence is also AP.
 - ii. If a constant is subtracted from each term of AP, then the resulting sequence is also AP.
 - iii. If each term of AP is multiplied by a constant, then the resulting sequence is also an AP.
 - iv. If each term of AP is divided by a non-zero constant, then the resulting sequence is also AP.
- 15. The arithmetic mean A of any two numbers a and b is given by $\frac{a+b}{2}$.
- 16. General form of GP: a, ar, ar², ar³,...., where a is the first term and r is the constant ratio. The term r can take any non-zero real number.

17. A sequence in GP will remain in GP if each of its terms is multiplied by a non-zero Class 11th Mathematics

- 18. A sequence obtained by multiplying the two GPs term by term results in GP with common ratio theproduct of the common ratio of the two GPs.
- 19. The reciprocals of the terms of a given GP form a GP with common ratio $-\frac{1}{2}$.
- 20. If each term of GP is raised to the same power, then the resulting sequence also forms GP.
- 21. The geometric mean (GM) of any two positive numbers a and b is given by \sqrt{ab} .
- 22. Let A and G be AM and GM of two given positive real numbers a and b, respectively, then $A \ge G$.

Where
$$A = \frac{a+b}{2}$$
 and $G = \sqrt{ab}$

- 23. Let A and G be AM and GM of two given positive real numbers a and b, respectively. Then, the quadratic equation having a and b as its roots is $x_2 - 2Ax + G = 0$.
- 24. Let A and G be AM and GM of two given positive real numbers a and b, respectively. Then the given numbers are $A \pm \sqrt{A^2 - G}$.
- 25. If AM and GM are in the ratio m:n, then the given numbers are in the ratio

$$m + \sqrt{m^2 - n^2} : m - \sqrt{m^2 - n^2}.$$

Top Formulae

- 1. The nth term or general term of AP is $a_n = a + (n 1)d$, where a is the first term and d is the common difference.
- 2. The general term of AP given its last term is I (n 1)d.
- 3. A sequence is AP if and only if its nth term is a linear expression in n, $A_n = Xn + Y$, where X and Y are constants.
- 4. Let a, a + d, a + 2d,..., a + (n 1)d be AP. Then $S_n = \frac{n}{2} \lceil 2a + (n-1)d \rceil \text{ or } S_n = \frac{n}{2} \lfloor a + \ell \rfloor \text{ where } \lambda = a + (n-1)d$
- 5. A sequence is AP if and only if the sum of its nth term is an expression of the form X_n^2 + Y, where X and Y are constants.
- 6. If the terms of an AP are selected in regular intervals, then the selected terms form an AP.

Class 11th Mathematics $Hen 2a_{n+1} + = a_n a_{n+2}$.

7. Let A₁, A₂, A₃, ...An be n numbers between a and b such that a, A₁, A₂, A₃, ...An, b is AP. The n numbers between a and b are as follows

$$A_{1} = a + d = a + \frac{b - a}{n + 1}$$

$$A_{2} = a + 2d = a + \frac{2(b - a)}{n + 1}$$

$$A_{3} = a + 3d = a + \frac{3(b - a)}{n + 1}$$

$$\dots$$

$$A_{n} = a + nd = a + \frac{n(b - a)}{n + 1}$$

- 8. General term of GP is ar^{n-1} , where a is the first term and r is the common ratio.
- 9. If the number of terms is 3 with the common ratio r, then the selection of terms should be $\frac{1}{r}$, and ar.
- 10. If the number of terms is 4 with the common ratio r2, then the selection of terms should be $\frac{a}{r^3}$, a ar and ar².
- 11. If the number of terms is 5 with the common ratio r, then the selection of terms should be $\frac{a}{r^2}$, a, a, ar and ar^2 .
- 12. Sum to the first n terms of GP $S_n = a + ar + ar^2 + ... + ar^{n-1}$

(i) If r = 1, $S_n = a + a + a + ... + a$ (n terms) = na. (ii) If r < 1, $S_n = \frac{q(1 - r^n)}{1 - r}$. (iii) If r > 1, $S_n = \frac{a(r^n - 1)}{r - 1}$.

Let G₁, G₂,, G_n be n numbers between positive numbers a and b such that a, G₁, G₂, G₃,G_n, b is GP.

Thus
$$b = br^{n+1}$$
, or $r = \left(\frac{b}{a}\right)^{\frac{1}{n+1}}$
 $G_1 = ar = a\left(\frac{b}{a}\right)^{\frac{1}{n+1}}$, $G_2 = ar^2 = a\left(\frac{b}{a}\right)^{\frac{2}{n+1}}$, $G_3 ar^3 = a\left(\frac{b}{a}\right)^{\frac{3}{n+1}}$
 $G_n = ar^n = a\left(\frac{b}{a}\right)^{\frac{n}{n+1}}$

14. The sum of infinite GP with the first term a and common ratio r (-1 < r < 1) is $S = \frac{a}{1-r}$

Some Special Series

1. The sum of first n natural numbers is

$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

2. Sum of squares of the first n natural numbers

$$1^{2}+2^{2}+3^{2}+....n^{2}=\frac{n(n+1)(2n+1)}{6}$$

3. Sum of cubes of first n natural numbers

1³ + 2³ + ... + n³ =
$$\frac{n^2(n+1)^2}{4} = \frac{[n(n+1)]^2}{4}$$

4. Sum of powers of 4 of first n natural numbers

$$1^{4} + 2^{4} + 3^{4} + \dots + n^{4} = \frac{n(n+1)(2n+1)(3n^{2} + 3n - 1)}{30}$$

5. Consider the series $a_1 + a_2 + a_3 + a_4 + ... + a_1 + ...$

If the differences in $a_2 - a_1$, $a_3 - a_2$, $a_4 - a_3$, are in AP, then the nth term is given by $a_n = an^2 + bn + c$, where a, b and c are constants.

6. Consider the series $a_1 + a_2 + a_3 + a_4 + ... + a_1 + ...$

If the differences in $a_2 - a_1$, $a_3 - a_2$, $a_4 - a_3$, are in GP then the nth term is given by an = $ar^{n-1} + b + c$, where a, b and c are constants.