

NOTES

- NOTES WITH MIND MAPS -

MATHEMATICS

COMPLEX NUMBERS & QUADRATIC EQUATIONS

Some Important Results

- 1. Solution of $x^2 + 1 = 0$ with the property $i^2 = -1$ is called the imaginary unit.
- 2. Square root of a negative real number is called an imaginary number.
- 3. If a and b are positive real numbers, then $\sqrt{-a} \times \sqrt{-b} = -\sqrt{ab}$ 4. If a is a positive real number, then we have $\sqrt{-a} = i\sqrt{a}$.
- 5. Powers of i

$$i = \sqrt{-1};$$

$$i^2 = -1;$$

$$i^3 = -i$$

$$i^4 = 1$$

- 6. If n>4, then i⁻ⁿ = $\frac{1}{\sqrt[n]{n}} = \frac{1}{\sqrt[n]{n}} = \frac{1}$
- 7. We have $i^{\circ} = 1$.
- 8. A number in the form a + ib, where a and b are real numbers, is said to be a complex number.
- 9. In complex number z = a + ib, a is the real part, denoted by Re z and b is the imaginary part denoted by Im z of the complex number z.
- 10. $\sqrt{-1}$ = i is called iota, which is a complex number.
- 11. The modulus of a complex number z = a + ib denoted by |z| is defined to be a non-negative real nur $\sqrt{a_1 + b^2}$, i.e. $|z| = \sqrt{a^2 + b^2}$.
- 12. For any non-zero complex number z = a + ib ($a \neq 0$, $b \neq 0$), there exists a complex $\frac{a}{a^2+b^2}+i\frac{(-b)}{a^2-b^2}$, denoted by $\frac{1}{z}$ or z^{-1} , called the multiplicative inverse of z such that number

$$\left(a+ib\right)\times\left(\frac{a}{a^2+b^2}+i\frac{\left(-b\right)}{a^2+b^2}\right)=1+i0=1\,.$$

- 13. Conjugate of a complex number z = a + ib, denoted as z, is the complex number a ib.
- 14. The number $z = r(\cos \theta + i\sin \theta)$ is the polar form of the complex number z = a + ib.

Here $r = \sqrt{a^2 + b^2}$ is called the modulus of $z = \theta = tan^{-1} \left(\frac{b}{a}\right)$ and is called the argument or amplitude of z, which is denoted by arg z.

COMPLEX NUMBERS & QUADRATIC EQUATIONS

Class 11th Mathematics

- 15. The value of θ such that $-\pi < \theta \le \pi$ called principal argument of z.
- 16. The Eulerian form of z is $z = re^{i\theta}$, where $e = cos\theta + isin\theta$
- 17. The plane having a complex number assigned to each of its points is called the Complex plane or Argand plane.
- 18. Let $a_0, a_1, a_2,...$ be real numbers and x is a real variable. Then, the real polynomial of a real variable with real coefficients is given as

$$f(x) = a_0 + a_1x + a_2x^2 + a_nx^n$$

19. Let $a_0, a_1, a_2,...$ be complex numbers and x is a complex variable. Then, the real polynomial of a complex variable with complex coefficients is given as

$$f(x) = a_0 + a_1x + a_2x^2 + a_nx^n$$

- 20. A polynomial $f(x) = a_0 + a_1x + a_2x^2 + ... \cdot a_nx^n$ is a polynomial of degree n.
- 21. Polynomial of second degree is called a quadratic polynomial.
- 22. Polynomials of degree 3 and 4 are known as cubic and biquadratic polynomials.
- 23. If f(x) is a polynomial, then f(x) = 0 is called a polynomial equation.
- 24. If f(x) is a qua
- 25. dratic polynomial, then f(x) = 0 is called a quadratic equation.

- 26. The general form of a quadratic equation is $ax^2 + bx + c = 0$, $a \ne 0$.
- 27. The values of the variable satisfying a given equation are called its roots.
- 28. A quadratic equation cannot have more than two roots.
- 29. Fundamental Theorem of Algebra states that 'A polynomial equation of degree n has n roots.'

Top Concepts

- 1. Addition of two complex numbers: If $z_1 = a + ib$ and $z_2 = c + id$ be any two complex numbers, then the sum $z_1 + z_2 = (a + c) + i(b + d)$.
- 2. Sum of two complex numbers is also a complex number. This is known as the closure property.
- 3. The addition of complex numbers satisfy the following properties:
 - i. Addition of complex numbers satisfies the commutative law. For any two complex numbers z_1 and z_2 , $z_1 + z_2 = z_2 + z_1$.
 - ii. Addition of complex numbers satisfies associative law for any three complex numbers z_1 , z_2 , z_3 , $(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3)$.
 - iii. There exists a complex number 0 + i0 or 0, called the additive identity or the zero complex number, such that for every complex number z,

$$z + 0 = 0 + z = z$$
.

- iv. To every complex number z = a + ib, there exists another complex number -z = -a + i(-b) called the additive inverse of z. z+(-z)=(-z)+z=0
- 4. **Difference of two complex numbers:** Given any two complex numbers If $z_1 = a + ib$ and $z_2 = c + id$ the difference $z_1 z_2$ is given by $z_1 z_2 = z_1 + (-z_2) = (a c) + i(b d)$.
- 5. Multiplication of two complex numbers Let $z_1 = a + ib$ and $z_2 = c + id$ be any two complex numbers. Then, the product z_1 z_2 is defined as follows:

$$z_1 z_2 = (ac - bd) + i(ad + bc)$$

- 6. **Properties of multiplication of complex numbers**: Product of two complex numbers is a complexnumber; the product z_1 z_2 is a complex number for all complex numbers z_1 and z_2 .
 - i. Product of complex numbers is commutative, i.e. for any two complex numbers z_1 and $z_2, z_1 z_2 = z_2 z_1$
 - ii. Product of complex numbers is associative, i.e. for any three complex numbers z_1 , z_2 , z_3 , $(z_1 \ z_2) \ z_3 = z_1 \ (z_2 \ z_3)$.

- iii. There exists a complex number 1 + i0 (denoted as 1), called the multiplicative identity such that z.1 = z for every complex number z.
- iv. For every non-zero complex number, z=a+ib or a+bi ($a\neq 0, b\neq 0$), there is a complex number $\frac{a}{a^2+b^2}+i\frac{-b}{a^2-b^2}$ called the multiplicative inverse of z such that $z\times\frac{1}{z}=1$
- v. distributive law: For any three complex numbers z₁, z₂, z₃,

a.
$$z_1(z_2 + z_3) = z_1.z_2 + z_1.z_3$$

b.
$$(z_1 + z_2) z_3 = z_1.z_3 + z_2.z_3$$

7. **Division of two complex numbers**: Given any two complex numbers $z_1 = a + ib$ and $z_2 = c + id$, where $z_2 \neq 0$, the quotient $\frac{z_1}{z_2}$ is defined by

$$\frac{z_1}{z_2} = z_1 \cdot \frac{1}{z_2} = \frac{ac + bd}{c^2 + d^2} + i \frac{bc - ad}{c^2 + d^2}$$
.

8. Identities for complex numbers

i.
$$(z_1 + z_2)^2 = z_1^2 + z_2^2 + \frac{2}{2}z_1 \cdot z_2$$
, for all complex numbers z_1 and z_2 .

ii.
$$(z_1 - z_2)^2 = z_1^2 - 2z_1z_2 + z_2^2$$

iii.
$$(z_1 + z_2)^3 = z_1^3 + 3z_1^2z_2 + 3z_1z_2^2 + z_2^3$$

iv.
$$(z_1 - z_2)^3 = z_1^3 - 3z_1^2z_2 + 3z_1z_2^2 - z_2^3$$

v.
$$z_1^2 - z_2^2 = (z_1 + z_2)(z_1 - z_2)$$

9. Properties of modulus and conjugate of complex numbers

For any two complex numbers z₁ and z₂,

i.
$$|z_1 z_2| = |z_1||z_2|$$

ii.
$$\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z|}$$
 provided $|z_2| \neq 0$

iii.
$$\overline{z_1 z_2} = \overline{z_1} \overline{z_2}$$

iv.
$$\overline{z_1 \pm z_2} = \overline{z_1} \pm \overline{z_2}$$

v.
$$\left(\frac{\overline{z_1}}{z_2}\right) = \frac{\overline{z_1}}{\overline{z_2}}$$
 provided $z_2 \neq 0$

vi.
$$\overline{\left(\overline{z}\right)} = z$$

vii.
$$z + \overline{z} = 2Re(z)$$

viii.
$$z - \overline{z} = 2i \operatorname{Im}(z)$$

ix.
$$z = \overline{z} \Leftrightarrow z$$
 is purely real

x.
$$z + \overline{z} = 0 \Rightarrow z$$
 is purely imaginary

xi.
$$z\overline{z} = \left\lceil Re(z) \right\rceil^2 + \left\lceil Im(z) \right\rceil^2$$

- 10. The order of a relation is not defined in complex numbers. Hence there is no meaning in $z_1 > z$.
- 11. Two complex numbers z_1 and z_2 are equal iff Re $(z_1) = \text{Re } (z_2)$ and Im (z_1) Im (z_2) .
- 12. The sum and product of two complex numbers are real if and only if they are conjugate of each other.
- 13. For any integer k, $i^{4k} = 1$, $i^{4k+1} = i$, $i^{4k+2} = -1$, $i^{4k+3} = -i$. $\sqrt{a} \times \sqrt{b} \neq \sqrt{ab}$ when a<0 and b<0.
- 14. The polar form of the complex number z = x + iy is $r(\cos \theta + i \sin \theta)$, where r is the modulus of z and θ is known as the argument of z.
- 15. For a quadratic equation $ax^2 + bx + c = 0$ with real coefficients a, b and c and a $\neq 0$. If the discriminant D = $b^2 4ac \ge 0$, then the equation has two real roots given by

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \quad \text{or } x = \frac{-b}{2a}.$$

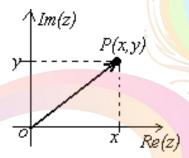
16. Roots of the quadratic equation $ax^2 + bx + c = 0$, where a, b and $c \in R$, $a \ne 0$, when discriminant $b^2 - 4ac < 0$, are imaginary given by

$$x = \frac{-b \pm \sqrt{4ac - b^2 i}}{2a} \,.$$

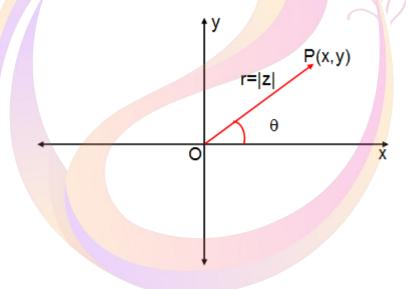
- 17. Complex roots occur in pairs.
- 18. If a, b and c are rational numbers and b^2 4ac is positive and a perfect square, then $\sqrt{b^2-4ac}$

is a rational number and hence the roots are rational and unequal.

- 19. If b^2 4ac = 0, then the roots of the quadratic equation are real and equal.
- 20. If b^2 4ac = 0 but it is not a perfect square, then the roots of the quadratic equation are irrational and unequal.
- 21. Irrational roots occur in pairs.
- 22. A polynomial equation of n degree has n roots. These n roots could be real or complex.
- 23. Complex numbers are represented in the Argand plane with X-axis being real and Y-axis being imaginary.



24. Representation of complex number z = x + iy in the Argand plane.



- 25. Multiplication of a complex number by i results in rotating the vector joining the origin to the pointrepresenting z through a right angle.
- 26. Argument θ of the complex number z can take any value in the interval [0, 2π). Different orientations of z are as follows

